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Abstract
I present a theoretical analysis of the phase diagram of bilayer Josephson
junction arrays in the presence of charge and magnetic frustration. Using a
dual description I show that the fundamental constituents of this theory are
electric and magnetic excitations and that their condensations lead to a plethora
of possible phases. The new formulation points out to the emergence of a
rich phase diagram not attainable by standard mean field theory approaches.
In addition to the usual superconducting and insulating states in the bilayer
system, I find states exhibiting Hall quantization coexisting with interlayer
coherence, states with Hall quantization without interlayer coherence and
interlayer coherent states without Hall quantization.

PACS numbers: 74.81.Fa, 73.43.−f, 11.15.−q

1. Introduction

The phase diagram of Josephson junction arrays (JJA) has a rich structure with many prominent
features such as an insulator–superconductor quantum phase transition [1] and topological
orders. A gauge field theory description of JJA was formulated in [2], which provided a natural
framework to study the manifestation of topological orders in these systems. Starting from the
quantum phase model which captures the relevant physics of JJA, the model was mapped, in
the self-dual approximation, into an Abelian gauge theory with a mixed Chern–Simons term.
Together with duality, this topological gauge theory allowed for the study of topological order
and the phase diagram of these systems. Furthermore in the presence of frustration due to offset
charges and external magnetic flux quanta, several theoretical investigations suggested that JJA
might support incompressible quantum fluid phases corresponding to purely two-dimensional
quantum Hall phases for either charges or vortices [3].

In [4] I re-examined self-dual JJA systems in the framework of a new Landau–Ginzburg
theory. The low energy dynamics was shown to be governed by two complex fields associated
with disordering due to electric charges and magnetic charges and minimally coupled to
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two gauge fields which determine the currents of Cooper pairs and vortices. I showed
that quantum disordering [5] due to topological electric and magnetic excitations describes
effectively various phases of these systems. In the new formulation, the superconducting,
insulating and Hall phases emerge from the condensation of composite fields which describe
bound states of electric and magnetic topological excitations. Contrary to previous studies of
the Hall states in JJA [3], the approach in [4] did not rely on the addition of any Chern–Simons
term.

In this paper, I wish to further analyze the properties of coupled bilayer Josephson junction
arrays which present a rich phase diagram due to extra degrees of freedom associated with
the layer index and interlayer coupling. I construct a dual description whose fundamental
constituents are topological electric and magnetic excitations and I show that this formalism
leads to a plethora of possible phases. Some of these phases describe incompressible quantum
Hall states with or without interlayer coherence. The results obtained are significant since
they imply the realization of bosonic quantized Hall states. The paper is organized as follows.
In section 2 I give the basic ideas of the new Landau–Ginzburg theory and its gauge theory
representation in the context of one single-layer JJA system, then in section 3 I apply these ideas
to the more interesting case of bilayer JJA, and I address systematically the electromagnetic
response and the quantum Hall phenomenology of these systems. The relevance of the present
results is discussed in the concluding paragraphs of this paper.

2. Single-layer JJA system

A Josephson junction array consists of a regular network of superconducting islands weakly
coupled by tunnel junctions. Each junction is characterized by a Josephson coupling EJ and
a junction capacitance C. Here I consider the limit where the nearest-neighbors capacitance C
dominates the capacitance to the ground. I include an external magnetic field Bext to induce
vortices in the system, and I allow for offset charges on the superconducting grains Qx = 2enq .
The quantum phase model Hamiltonian describing the charges and vortices in this system [1]
is given by

Ĥ = 4e2

2

∑
〈ij〉

(ni − nq)C
−1
ij (nj − nq) − EJ

∑
〈ij〉

cos(φi − φj − Aij ). (1)

The first term in the Hamiltonian is the charging energy in which the C−1
ij is the inverse

capacitance matrix (Cii = 4C and Cij = −C for nearest neighbors); the second term is due
to the Josephson tunneling. The variables ni and φi denote respectively the charge and the
phase of the superconducting order parameter of the ith island in the array, and the sums are
over nearest neighbors. The competition between these two canonically conjugated variables
is captured by the usual commutation relation [ni, φj ] = iδij . A perpendicular magnetic field

with vector potential A enters the Hamiltonian through Aij = 2e
∫ j

i
A · dl.

This Hamiltonian is mapped into an effective Abelian gauge theory [2] formulated
in terms of two gauge fields aµ and bµ, which are related to two conserved currents
pµ = εµνλ∂νbλ/(2π), µ = 0, 1, 2 and lµ = εµνλ∂νaλ/(2π) associated with the motion
of charges and vortices. The dynamics of these fluctuations in the self-dual approximation [2]
is governed by the imaginary-time Lagrangian

L = κ1

4
f 2

µν +
κ2

4
g2

µν +
i

2π
(bµ + bµ)εµνλ∂ν(aλ + aλ) + iaµQµ + ibµMµ, (2)

where fµν = ∂µbν − ∂νbµ, gµν = ∂µaν − ∂νaµ and the background gauge potentials a

and b, defined by ao = bo = 0, ∂oaj = ∂obj = 0,
−→∇ ∧ a = −2eBext,

−→∇ ∧ b = 2πnq ,

2
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account for frustration due to external magnetic fields and to offset charges. The coupling
constants κ1 and κ2 are related to the Josephson energy and to the charging energy
κ1 = 1/(4π2EJ ), κ2 = 1/(8Ec). Equation (2) shows that the moving particles associated
with the current Mi see a ‘magnetic field’ εij ∂i(bj + bj )/2π equal to the sum of the density
of bosons and a fluctuating field. Similarly, the moving particles associated with the current
Qi see a ‘magnetic field’ εij ∂i(aj + aj )/2π equal to the sum of the density of fluxes and a
fluctuating field.

Using standard U(1) particle–vortex duality [6], complex scalar fields are introduced to
create and annihilate the topological excitations Qµ and Mµ by elaborating the description
in equation (2) to a Landau–Ginzburg theory as shown in [4]. This dual Landau–Ginzburg
representation in terms of two scalar fields φC and φM is convenient to study JJA systems
since its phase structure can be analyzed by considering the condensation of these fields. More
generally, one can consider a generic condensate consisting of n quasiparticles of type φC and
m quasiparticles of type φM . Such fields, φn,m, carry n units of the aµ charge and m units of
the bµ charge, and are described by the following Euclidean effective theory:

L = 1

2
|(∂µ − in(aµ − aµ) − im(bµ − bµ))φn,m|2 + V (φn,m)

+
i

π
bµεµνλ∂νaλ +

κ1

4
f 2

µν +
κ2

4
g2

µν + i
2e

π
bµεµνλ∂νAλ. (3)

The potential V (f ) can be expanded as V (f ) = rf 2 + uf 4 + · · · , and describes the short
distance physics contained in the original theory defined on the lattice. The phase diagram is
analyzed by considering the condensation of the fields φn,m. A phase in which the topological
charge excitations are absent corresponds to taking r large and positive in the potential V (f ),
while a phase in which these degrees proliferate and condense, 〈φn,m〉 �= 0, corresponds to
taking r negative. The latter phase is assumed to occur when the background fields cancel.
The last term in equation (3) couples the current charges with external probing electromagnetic
field Aµ.

Before we proceed with the analysis of the model defined in (3), some comments about
the significance and restriction of the numbers n and m are in order. On one hand the
reduced equations of motion obtained by varying the Lagrangian with respect to the gauge
fields aµ and bµ yield the following relation for the current associated with the condensate
Jµ = εµνλ∂νbλ/(πn) = εµνλ∂νaλ/(πm), which implies that each composite carries two
fluxes φa = mπ and φb = nπ respectively with the gauge fields aµ and bµ. On the other
hand, at a microscopic level, the effect of a flux tube on particles is to add a phase factor
proportional to the winding multiplying the amplitude for trajectories where these objects
wind around each other. This alters the spectrum of allowed angular momentum, which
in the present case is L = nm. The phase acquired by these objects as they are slowly
interchanged at great distances is a measure of their quantum statistics [7], and here it is
equal to θ = πnm. Since in JJA the charge degrees of freedom are bosons (Cooper pairs),
the fields φn,m must also have bosonic statistics, i.e. nm even integer. Furthermore, using the
field equations, the coupling with an external electromagnetic field is given by a term in the
Lagrangian 
L = 2enAµJµ, which shows that the condensate φn,m carries a physical charge
2en. Since the fundamental electric charges in JJA are Cooper pairs with charge 2e, in our
analysis of the various phases we restrict n to 0 or 1 and allow m to take even integer values.

All the thermodynamic properties as well as the electromagnetic response of the system
are completely determined from the path integral

Z[Aµ] =
∫

[daµ][dbµ][dφ] exp

(
−

∫
d3xL

)
. (4)

3
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The technique we adopt in evaluating the partition function Z[Aµ] is to linearize terms
in the Lagrangian so that Gaussian integrations with respect to quadratic terms in the gauge
fields can be easily carried out [8].

In this paper we provide more details about the dual formulation of the theory defined by
equation (3) which later will be generalized to the bilayer system. We rewrite the Higgs field
as φ = f eiω with the phase split into multivalued and regular parts ω = ω + χ where the first
term describes a configuration of vortices of φ and χ represents single-valued fluctuations
around such configurations

L = 1

2
(∂µf )2 +

1

2
f 2[∂µω − n(aµ − aµ) − m(bµ − bµ)]2 + V (f )

+
i

π
bµεµνλ∂νaλ +

κ1

4
f 2

µν +
κ2

4
g2

µν + i
2e

π
bµεµνλ∂νAλ. (5)

To perform the path integral (4), we first linearize the second term of the Lagrangian (5) by
introducing an auxiliary field Cµ

L = 1

2
(∂µf )2 + iCµ[∂µχ + ∂µω − n(aµ − aµ) − m(bµ − bµ)] +

1

2f 2
(Cµ)2 + V (f )

+
i

π
bµεµνλ∂νaλ +

κ1

4
f 2

µν +
κ2

4
g2

µν + i
2e

π
bµεµνλ∂νAλ. (6)

As χ is single-valued, one can integrate it out leading to ∂µCµ = 0. This constraint is
solved by introducing a dual gauge field: Cµ = εµνλ∂νHλ and the resulting Lagrangian is

L = 1

2
(∂µf )2 + i[n(aµ − aµ) + m(bµ − bµ)]εµνλ∂νHλ +

1

4f 2
(Hµν)

2

+ V (f ) +
i

π
bµεµνλ∂νaλ +

κ1

2
f 2

µν +
κ2

2
g2

µν + i
2e

π
bµεµνλ∂νAλ. (7)

To analyze this effective action, I diagonalize the gauge part of the Lagrangian by using
the linear transformation aµ = (Xµ + Yµ) 4

√
κ1/κ2, bµ = (Xµ − Yµ) 4

√
κ2/κ1

L = 1

2
(∂µf )2 + V (f ) +

1

4πωJ

(
X2

µν + Y 2
µν

)
+ iηXµεµνλ∂νXλ − iηYµεµνλ∂νYλ

+
1

4f 2
H 2

µν + i(θ1Xµ + θ2Yµ)εµνλ∂νHλ + i(Xµ − Yµ)εµνλ∂νÃλ (8)

where η = 1/π, θ1(2) = n 4
√

κ1/κ2 ± m 4
√

κ2/κ1, 2πωJ = 1/
√

κ1κ2 and Ãλ = 2e
π

4
√

κ2/κ1Aλ.

To achieve an effective action for the probing gauge field Ãλ we integrate out all gauge fields
Xµ, Yµ and Hµ by choosing a suitable gauge fixing condition. At an intermediate step we find

L = 1

2
HµD−1

µν Hν +
1

2
�1F̃

2
µν +

1

2
(θ1 − θ2)�1HµνF̃µν − iπωJ η(θ1 + θ2)�1HµεµνλF̃νλ, (9)

where in momentum space D−1
µν (q) = [

1/f 2 + �1
(
θ2

1 + θ2
2

)]
(q2δµν − qµqν) + 2πωJ η

(
θ2

2 −
θ2

1

)
�1ε

µλνqλ and �1 = πωJ /[q2 + (2πωJ η)2]. Next integration over Hµ gives an effective
action for the probing gauge field Ãλ

Sg =
∫

q2�1�4[q2/f 2 + πωJ (θ1 + θ2)
2/2]ÃµεµλνqλÃν +

1

2
Ãµ(q2δµν − qµqν)Ãν

× [
2�1 − �2

1�3{q2(θ1 − θ2)
2 − (2πωJ η)2(θ1 + θ2)

2}
− 2q2�2

1�4(2πωJ η)
(
θ2

1 − θ2
2

)]
, (10)

where �−1
3 = q2/ξ 2 + σ 2ξ 2, q2�4 = −�3σξ 2, σ = (2πωJ η)

(
θ2

2 − θ2
1

)
�1 and 1/ξ 2 =

1/f 2 +�1
(
θ2

1 +θ2
2

)
. This action is the central result of this section, it encodes all the information

about the phenomenology of the one-layer JJA system. The electromagnetic response of the
system is derived from the correlation functions δ2S/δAµ(−q)δAν(q).

4
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2.1. Electric condensation

In this phase n = 1 and m = 0. Working in zero background magnetic field and using
θ1 = θ2 = 4

√
κ1/κ2 we find that the coefficient of the Chern–Simons term vanishes. The long

distance physics is determined by a Meissner action

Sg =
∫

1

2
Aµ

(
δµν − qµqν

q2

)
Aν

4e2f 2

1 + 4π2f 2κ1
. (11)

The induced electromagnetic current obtained by varying the action, Jµ = δS/δAµ gives
the standard London form. This shows that the electric condensation phase is actually a
superconducting phase. In this phase the vortices are confined and their mass mφ = 1/4EC

is much larger than that of the electric charges mq = 1/(2π2EJ ), hence this phase is realized
for κ1 � κ2.

2.2. Magnetic condensation

In this phase n = 0,m �= 0. Working in zero background offset charges and using
θ1 = −θ2 = m 4

√
κ2/κ1 the coefficient of the Chern–Simons term vanishes and the long

distance physics is determined purely by the Maxwell term

Sg = 1

2

∫
Aµ(q2δµν − qµqν)Aν

4e2κ2

1 + 4π2f 2m2κ2
. (12)

The gauge field Aµ is massless and the longitudinal conductivity vanishes. This shows
that the magnetic condensation corresponds to an insulating phase. In this phase the charges
are confined and their mass is much heavier mq 	 mφ , hence this phase is realized for
κ1 	 κ2.

As expected the magnetic and the electric condensations are symmetric around the point
κ1 = κ2 reflecting the self-duality of the model.

2.3. Condensation of electric-magnetic bound states

In this phase we take n = 1 and m is an even integer. To obtain condensation of composite
fields in zero background field we require that eBext/π = mnq. The effective dynamics of the
external electromagnetic gauge potential has a non-vanishing Chern–Simons term in addition
to the Maxwell term

Sg = e2

πm

∫
AµεµλνqλAν +

1

8m2ξ 2

∫
Aµ(q2δµν − qµqν)Aν. (13)

Since the latter term is higher dimensional, it is less important at long distance and the
remaining Chern–Simons describes a Hall fluid. Varying with respect to Aµ we determine the
electromagnetic current Jµ = 2e2/(πm)εµλν∂λAν . From the µ = 0 component of the current
we see that an excess δn of bound charges is related to a local fluctuation of the magnetic field
by δn = en/(πm)δB, which allows us to identify the filling factor ν = 1/m. From the µ = i
component of the current, an electric field produces a current in the orthogonal direction with
a Hall conductivity σxy = 1/m in units of 4e2/(2π�).

3. Bilayer JJA

In this section, we consider a quasi-three-dimensional array composed of two coupled JJA
layers (see figure 1). An appealing feature of coupling two layers of JJA is the possibility
to tune independently the interlayer capacitance and thereby control the interaction between

5
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Figure 1. Schematic representation of a bilayer Josephson junction array.

vortices and charges. As a result, depending on the arrays’ physical parameters, each layer
can be in a regime dominated by Cooper pairs (superfluid) or a regime dominated by vortices
(insulating). This system has been investigated in [9] with the aim of showing the existence of
a duality between charges and vortices. The focus in [9] was on the situation when one array
is in the quasi-classical (vortex) regime while the other is in the quantum (charge) regime. The
resulting effective action describes dual charges in one array and vortices in the other, and in
contrast to the one-layer problem, these are dynamic degrees of freedom.

A mean field theory description was used in [10] to study the changes in the individual
critical temperature of two JJA, when both were in the semiclassical parameter regime. Using
a WKB semiclassical expansion valid for EC � EJ , an effective Hamiltonian was analyzed
within a variational mean field theory. The evaluated critical temperature shift showed that
an increase in the interaction capacitance increases phase coherence in the arrays. In the case
when one array is quantum phase dominated and the other Cooper pair charge dominated, the
derived effective Hamiltonian is dually symmetric between charges and vortices, and exhibits
in the simplified case where one array has one vortex and the other one charge, a gauge-like
interaction, implying that a vortex feels an effective magnetic field produced by the charge.
However, that mean field theory did not allow for a more elaborate study of the interplay of
quantum-classical effects resulting from the vortex–charge interaction. In particular there was
no discussion about the quantum Hall phases caused by charge–vortex bound states.

The formalism employed in this paper is more suitable to directly study the gauge-like
interaction between charges and vortices with the additional advantage of predicting a variety of
exotic charge–vortex bound states not attained by the mean field theory of [10]. For the bilayer
JJA system, the model is formulated in terms of four gauge fields a(α)

µ and b(α)
µ with α = 1, 2

the layer index. These fields describe the conserved currents of charges (1/2π)εµνλ∂νb
(α)
λ ,

and the conserved currents of vortices (1/2π)εµνλ∂νa
(α)
λ .

Imposing self-duality allows a suitable gauge theory representation of the model of
interacting charges and vortices, and contrary to previous studies, it generates in the bilayer
JJA system the most general interactions between the charges and the vortices [4]. The model
has intralayer and interlayer electric interactions similar to those introduced in [8], as well as
intralayer and interlayer vortex–vortex interactions that emerge from the imposed high degree
of symmetry. The ensuing dynamics is rich and leads to a large class of possible states. The
dynamics is governed by the imaginary-time Lagrangian

L= κ1

4

[
f (α)

µν

]2
+

κ2

4

[
g(α)

µν

]2
+ iηαβ

(
b(α)

µ + b
(α)

µ

)
εµνλ∂ν

(
a

(β)

λ + a
(β)

λ

)
+ ia(α)

µ Q(α)
µ + ib(α)

µ M(α)
µ . (14)

The matrix η̂ appearing in equation(13) has elements in momentum space given by:
η11 = η22 = (1 + q/

√
q2 + �2)/(4π), η12 = (1 − q/

√
q2 + �2)/(4π) and �2 = 2CI/C

6
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with CI is the interlayer capacitance between each island in one array coupled parallel to one
island in the other array (straight coupling) and C the nearest-neighbors capacitance.

The same approach used before in the one-layer case can also be used to construct the
effective field theory of the bilayer JJA system. More generally one considers composite
condensates consisting of bound states of n(α) excitations in φ

(α)
C and m(α) excitations in

φ
(α)
M , φ{n,m} ∼ φn(1)

C φn(2)

C φm(1)

M φm(2)

M , where n(α) and m(α) are integers. The Lagrangian that
needs to be analyzed is

L = 1

2
(∂µf )2 + i

[
nα

(
a(α)

µ − aµ

)
+ mα

(
b(α)

µ − bµ

)]
εµνλ∂νHλ +

1

4f 2
(Hµν)

2

+ V (f ) + iηαβb(α)
µ εµνλ∂νa

(β)

λ +
κ1

4

[
f (α)

µν

]2
+

κ2

4

[
g(α)

µν

]2
+ i

e

π
b(α)

µ εµνλ∂νA
(α)
λ , (15)

where as before f is the amplitude of the condensate and the gauge field Hµ results
from integrating over the phase of the condensate. To analyze this effective action, I

diagonalize the gauge part of the Lagrangian by writing a(α)
µ = (

X(α)
µ + Y (α)

µ

)
4

√
κ1

/
κ2, b

(α)
µ =(

X(α)
µ − Y (α)

µ

)
4
√

κ2/κ1 and by using the symmetric and antisymmetric combinations X±
µ =(

X(1)
µ ± X(2)

µ

)/√
2, Y±

µ = (
Y (1)

µ ± Y (2)
µ

)/√
2. In terms of these new fields, the gauge part of

the Lagrangian is

L = 1

4f 2
H 2

µν +
∑
σ=±

1

4πωJ

(
X(σ)2

µν + Y (σ)2
µν

)
+ iη(σ)X(σ)

µ εµνλ∂νX
(σ)
λ − iη(σ)Y (σ)

µ εµνλ∂νY
(σ)
λ

+ i
(
θ

(σ)
1 X(σ)

µ + θ
(σ)
2 Y (σ)

µ

)
εµνλ∂νHλ +

(
X(σ)

µ − Y (σ)
µ

)
εµνλ∂νÃ

(σ )
λ . (16)

To obtain the effective field theory of the probing electromagnetic field, we integrate out the
gauge fields X(σ)

µ , Y (σ)
µ and Hµ using suitable gauge fixing conditions. This can be easily

achieved since the action is quadratic in these fields and the result is

S = 1

2

∫ ∑
σ,σ ′=±

Ã(σ )
µ (q2δµν − qµqν)Ã

(σ ′)
ν

[
2�σ

1 δσ,σ ′ − �3�
σσ ′ − q2�4


σσ ′]
− 1

2

∫ ∑
σ,σ ′=±

Ã(σ )
µ εµλνqλÃ

(σ ′)
ν [q2�4�

σσ ′ − q2�3

σσ ′

], (17)

where �σσ ′ = x(σ)x(σ ′)q2 − y(σ)y(σ ′); 
σσ ′ = x(σ)y(σ ′) + y(σ)x(σ ′); x(σ) = �σ
1

(
θ

(σ)
1 −

θ
(σ)
2

); y(σ) = (2πωJ η(σ))�σ
1

(
θ

(σ)
1 + θ

(σ)
2

); θσ
1(2) = nσ 4

√
κ1/κ2 ± mσ 4

√
κ2/κ1,

�σ
1 (q) = πωJ /[q2 + (2πωJ ησ )2]; �−1

3 = q2/ρ2 + �2ρ2; q2�4 = −�3�ρ2; � =∑
σ=±(2πωJ ησ )

(
θσ2

2 − θσ2
1

)
�σ

1 , and 1/ρ2 = 1/f 2 +
∑

σ=± �σ
1

(
θσ2

1 + θσ2
2

)
.

This action encodes all the information about the phenomenology of the bilayer JJA
system. The electromagnetic response of the system is derived from the correlation functions
δ2S/δA(σ)

µ (−q)δA(σ ′)
ν (q). In the following sections, we analyze the long wavelength q → 0

and low frequency ω limits of these correlation functions for various condensates represented
by integers nα and mα .

3.1. Condensate with n1 = n2 = 1 and m1 = m2 = m

In this case, the electric and magnetic excitations form bound states in each layer and the
interlayer interaction forces them to form a composite condensate (see figure 2).

Using θ−
1 = θ−

2 = 0, the effective field theory contains a non-vanishing Chern–Simons
term

S = − e2

2πm

∫
A+

µεµλνqλA
+
ν +

e2

4π2κ1

∫
A−

µ

(
δµν − qµqν

q2

)
A−

ν . (18)

7
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Figure 2. Schematic representation of the condensate with n1 = n2 = 1 and m1 = m2 = m.

Figure 3. Schematic representation of the condensate with n1 = n2 = 1 and m1 �= m2.

Varying with respect to A±
µ, we determine the electromagnetic currents J +

µ =
ie2/(πm)εµλν∂λA

+
ν and J−

µ = e2/(2π2κ1)A
−
µ . From the µ = i component of the current, an

electric field produces a current in the orthogonal direction with a quantized Hall conductivity
in each layer σ 11

xy = σ 22
xy = 1/4m in units of 4e2/(2π�) and also a quantized Hall drag

conductivity σ 12
xy = 1/4m, namely, a Hall driving force in one layer induces a dragged current

in the second layer. Furthermore, the second term in the above action shows that the system
exhibits interlayer coherence. This can be interpreted as a perfect drag with currents along the
two arrays equally large in magnitude but opposite in direction σ 12

xx (ω) = −e2EJ /ω.

3.2. Condensate with n− �= 0 or m− �= 0

In this case the long wavelength limit q → 0 and small frequency ω leads to the possibility of
a Chern–Simons or of a Meissner term

S = 2e2

π
n+m−K−

∫
A+

µεµλνqλA
−
ν

+
2e2

π
K−

∫
A−

µ

[
ωJ n−2

(
δµν − qµqν

q2

)
− n+m+m−2

√
κ2/κ1K

−εµλνqλ

]
A−

ν ,

(19)

where K− = 1/[n−2√κ1/κ2 + m−2√κ2/κ1]. Below we analyze special cases.

3.2.1. Condensate with n− = 0 and m− �= 0. In this state (n1 = n2 = 1), charges from one
layer bind to vortices from the other layer and the two composites condense (see figure 3).
The state thus formed has a quantized Hall conductance without interlayer coherence

S = − e2

2π
Kαα′

∫
A(α)

µ εµλνqλA
(α′)
ν + Maxwell term.

Kαα′ = 8n/(m1 − m2)
2

[
m2 −(m1 + m2)/2

−(m1 + m2)/2 m1

]
.
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Figure 4. Schematic representation of a bound state of an electric excitation (n = 1) from one
array and a magnetic excitation (m) from the other array.

As a special case, m1 = m and m2 = −m, we find a quantized Hall conductivity in each
layer σ 11

xy = −σ 22
xy = 1/4m in units of 4e2/(2π�).

3.2.2. Condensate with n− �= 0 and m− = 0. In this case the Chern–Simons term vanishes
and the effective dynamics of the external electromagnetic gauge potential has a Meissner-type
term

Sg = e2

π2κ1

∫
A−

µ

(
δµν − qµqν

q2

)
A−

ν . (20)

In this state, the quantum Hall effect is destroyed without destroying interlayer coherence.

3.2.3. Condensate with n− = n+,m− = −m+. The condensate formed consists of n electric
charges from one array forming a bound state with m magnetic charges from the other array
(see figure 4).

The effective dynamics of the external electromagnetic gauge potential has a non-
vanishing Chern–Simons term and a Meissner term

Sg = −2me2

π
K

∫ [
A+

µεµλνqλA
−
ν + Km2

√
κ2/κ1A

−
µεµλνqλA

−
ν

]
+

2e2ωJ

π
K

∫
A−

µ

(
δµν − qµqν

q2

)
A−

ν , (21)

where K = 1/[
√

κ1/κ2 + m2√κ2/κ1]. In this case the Hall state in the bilayer JJA system
coexists with interlayer coherence. At the self-dual point (κ1 = κ2), the Hall conductance is
quantized.

4. Conclusion

In this paper, I have presented results of a model of two coupled layers of JJA frustrated by
external offset charges and magnetic fields. The coupling between the layers was imposed
by requiring self-duality between the charges and vortices. Such an approximation is valid
at low energies compared to relevant energy scales of the system (E � EC,EJ ) since the
duality-breaking terms are suppressed in that energy regime. This allowed a suitable gauge
theory representation of the model of interacting charges and vortices, and generated in the
bilayer JJA system the most general interactions between the charges and the vortices. Starting
from the Abelian gauge theory with a mixed Chern–Simons term and using duality, I showed
that the fundamental constituents of this theory are electric and magnetic excitations and their
condensation leads to a variety of possible phases. In addition to the usual superconducting
and insulating states in the bilayer system, I find states exhibiting Hall quantization coexisting
with interlayer coherence, states with Hall quantization without interlayer coherence and
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interlayer coherent states without Hall quantization. In our approach, the Hall states originate
from the peculiar coupling between the electric-magnetic excitations and the gauge fields,
which in effect attaches an even number of fictitious vortices to each Cooper pair and
correspondingly by self-duality of the model attaches an even number of fictitious Cooper
pairs to each vortex. These results, not attainable by standard mean field theory approaches,
are significant since they imply the realization of bosonic quantized Hall states analogous
to the fractional quantum Hall effect in semiconductor heterojunctions, which opens new
fundamental theoretical understandings, and the detection of the various states presents an
interesting experimental challenge in its own right. For the most part the experimentally
fabricated Josephson junction systems have been two dimensional, but prototype quasi-three-
dimensional samples have also been fabricated [11]. The insulating–superconducting quantum
phase transition is actually observed in JJA at low temperatures [1]. As for the experimental
work on the Hall effect in JJA, so far no conclusive results for the Hall quantization in these
systems are known. However the Hall measurements of [12] indicate that the Hall effect
in these systems is more complicated and exhibits some interesting characteristics such as
a periodic Hall resistance with respect to the applied magnetic field and a larger Hall angle
consistent with the expectation that the offset charges are responsible for the Hall effect. Our
approach analyzes the quantum Hall state by means of an effective field theory describing
vortex–charge bound states. As such, it cannot determine the exact range of parameters
under which the quantum Hall state is the ground state. Below we make some qualitative
comments regarding that question. The observation of a Hall voltage in JJA requires very
low temperature (to suppress thermal fluctuations) and the parameters of the array should
be such that a balance is achieved between the charging energy and the Josephson energy
EC ≈ EJ . This is crucial since in a strongly superconducting array (EJ 	 EC) any Hall
probes would be shorted leading to zero Hall voltage. Whereas in an array with a strong
Coulomb blockade (EC 	 EJ ) the whole array is insulating and therefore the Hall probes are
effectively disconnected, and no Hall voltage can be measured.
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